Estimating biomass of individual pine trees using airborne lidar
نویسنده
چکیده
Airborne lidar (Light Detection And Ranging) is a proven technology that can be used to accurately assess aboveground forest biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings typical for loblolly pine stands (Pinus taeda L.) in the southeastern United States. More specific objectives included: (1) assessing the accuracy of estimating diameter at breast height (dbh) for individual pine trees using lidar-derived individual tree measurements, such as tree height and crown diameter, and (2) investigating the use of lidar-derived individual tree measurements with linear and nonlinear regression to estimate per tree aboveground biomass. In addition, the study presents a method for estimating the biomass of individual tree components, such as foliage, coarse roots, stem bark, and stem wood, as derived quantities from the aboveground biomass prediction. A lidar software application, TreeVaW, was used to extract forest inventory parameters at individual tree level from a lidar-derived canopy height model. Lidar-measured parameters at individual tree level, such as height and crown diameter, were used with regression models to estimate dbh, aboveground tree biomass, and tree-component biomass. Field measurements were collected for 45 loblolly pine trees over 0.1and 0.01-acre plots. Linear regression models were able to explain 93% of the variability associated with individual tree biomass, 90% for dbh, and 79–80% for components biomass. r 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
A voxel-based lidar method for estimating crown base height for deciduous and pine trees
The overall goal of this study was to develop methods for assessing crown base height for individual trees using airborne lidar data in forest settings typical for the southeastern United States. More specific objectives are to: (1) develop new lidar-derived features as multiband height bins and processing techniques for characterizing the vertical structure of individual tree crowns; (2) inves...
متن کاملEstimating Biophysical Parameters of Individual Trees in an Urban Environment Using Small Footprint Discrete-Return Imaging Lidar
Quantification of biophysical parameters of urban trees is important for urban planning, and for assessing carbon sequestration and ecosystem services. Airborne lidar has been used extensively in recent years to estimate biophysical parameters of trees in forested ecosystems. However, similar studies are largely lacking for individual trees in urban landscapes. Prediction models to estimate bio...
متن کاملAn Adaptive Computer Vision Technique for Estimating the Biomass and Density of Loblolly Pine Plantations using Digital Orthophotography and LiDAR Imagery
Forests have been proposed as a means of reducing atmospheric carbon dioxide levels due to their ability to store carbon as biomass. To quantify the amount of atmospheric carbon sequestered by forests, biomass and density estimates are often needed. This study develops, implements, and tests an individual tree-based algorithm for obtaining forest density and biomass using orthophotographs and s...
متن کاملEfficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas
The reliability of airborne light detection and ranging (LiDAR) for delineating individual trees and estimating aboveground biomass (AGB) has been proven in a diverse range of ecosystems, but can be difficult and costly to commission. Point clouds derived from structure from motion (SfM) matching techniques obtained from unmanned aerial systems (UAS) could be a feasible low-cost alternative to ...
متن کاملEstimating Forest Biomass Dynamics by Integrating Multi-Temporal Landsat Satellite Images with Ground and Airborne LiDAR Data in the Coal Valley Mine, Alberta, Canada
Assessing biomass dynamics is highly critical for monitoring ecosystem balance and its response to climate change and anthropogenic activities. In this study, we introduced a direct link between Landsat vegetation spectral indices and ground/airborne LiDAR data; this integration was established to estimate the biomass dynamics over various years using multi-temporal Landsat satellite images. Ou...
متن کامل